
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

A Survey on Streaming Data WarehousesA Survey on Streaming Data WarehousesA Survey on Streaming Data WarehousesA Survey on Streaming Data Warehouses

Bolla Saikiran1, Kolla Morarjee2

1M.Tech Scholor,Department of Computer Science and Engineering, CMR Institute of Technology

Medchal, Hyderabad, Andhra Pradesh, India

2Assistant Professor, Department of Computer Science and Engineering, CMR Institute of Technology

Medchal, Hyderabad, Andhra Pradesh, India

Abstract
Update scheduling in streaming data warehouses, which combine

the features of traditional data warehouses and data stream

systems. We want to gather the literature related to scalable,

updated, real time and dynamic scheduling in streaming

warehouses. With this analysis after referring all papers in this

area we will came to the best methodology which is suitable for

combining streaming and data warehouses by limiting the

staleness. Our main objective is to focus on integration of

historical data and current data by limiting staleness. Then we

want to adopt the efficient integration technique to real business

applications where large amount of data is used.

Keywords: Streaming data warehouse, Data Stream, Data

Warehouse.

1. Introduction

Data mining is the process of analyzing data from different

perspectives and summarizing it into useful information that can

be used to increase revenue, cuts costs, or both. The goal of a

streaming warehouse is to propagate new data across all the

relevant tables and views as quickly as possible. Once new data

are loaded, the applications and triggers defined on the

warehouse can take immediate action. This allows businesses to

make decisions in nearly real time, which may lead to increased

profits, improved customer satisfaction, and prevention of

serious problems that could develop if no action was taken. Real-

time scheduling is a well-studied topic with a lengthy literature. a

typical hard real time system, jobs must be completed before

their deadlines a simple metric to understand and to prove results

. In a firm real-time system, jobs can miss their deadlines, and if

they do, they are discarded. Streaming warehouse must load all

of the data that arrive therefore no updates can be discarded. In a

soft real-time system, late jobs are allowed to stay in the system,

and the performance metric is lateness which is the difference

between the completion times of late jobs and their deadlines. A

stream warehouse enables queries that seamlessly range from

real-time alerting and diagnostics to long-term data mining.

Data Stream Management Systems (DSMS) support simple

analyses on recently arrived data in real time. Streaming

warehouses such as Data Depot combine the features of these

two systems by maintaining a unified view of current and

historical data. The goal of a streaming warehouse is to

propagate new data across all the relevant tables and views as

quickly as possible. Recent work on streaming warehouses has

focused on speeding up the Extract-Transform-Load (ETL)

process. A streaming data warehouse maintains two types of

tables: base and derived. Each table may be stored partially or

wholly on disk. A base table is loaded directly from a data

stream. A derived table is a materialized view defined over one

or more tables. In practice, warehouse tables are horizontally

partitioned by time so that only a small number of recent

partitions are affected by updates[14]. While traditional data

warehouses are typically refreshed during downtimes, streaming

warehouses are updated as new data arrive. The traditional data

warehouses are typically refreshed during downtimes, streaming

warehouses are updated as new data arrive. The problem with

this approach is that new data may arrive on multiple streams,

but there is no mechanism for limiting the number of tables that

can be updated simultaneously.

Many stream-based applications have sophisticated data

processing requirements and real-time performance expectations

that need to be met under high-volume, time varying data streams

Update Scheduling in Streaming Data Warehouses, which

combine the features of traditional data warehouses and data

stream systems. In streaming warehouses, whenever new data

arrive, it will be push up for appending into the streaming

warehouses. In traditional warehouses data will get refreshed

during the non-business hours[11]. Data warehouses are typically

refreshed in a batch fashion: the updates from data sources are

buffered during working hours, then loaded through the

Extraction-Transformation-Loading (ETL) process when the

warehouse is quiescent. This clean separation between querying

and updating is a fundamental assumption of conventional data

warehousing applications, and clearly simplifies several aspects

of the implementation.

A real-time warehouse scheduler must simultaneously pursue

multiple goals. First, the ultimate goal is to ensure that queries on

the warehouse see data that is as up-to date as possible. Second,

the scheduler must maintain data consistency in the sense that a

derived table must be equivalent to running its defining query

over the state of its source table. Third, the scheduler must

handle heterogeneous task sets, as different streams may have

different data rates and inter-arrival times; the main challenge

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

here is to prevent short-lived up-dates from being blocked by

long-running updates. Fourth, the scheduler must support

multiprocessor machines in order to accommodate high update

and query rates.

2. Literature Review

The Literature Review of various scheduling algorithms in

streaming data warehouses are discussed below.

B. Adelberg H. Garcia-Molina B. Kao[17] proposed “Applying

Update Streams in a Soft Real-Time Database System”. In this

paper, they discuss the various properties of updates and views

that affect this tradeoff . They also examine, through simulation,

four algorithms for scheduling transactions and installing up-

dates in a soft real-time database. They also evaluated the

algorithms under many other scenarios. For example, they

studied the effects of changing the size of the maximum age of

objects used in MA, the effects of applying the updates in the

update queue in LIFO or FIFO order, and the effects of varying

the update arrival rate. They discuss one strategy for processing

burst streams — adaptive, load-aware scheduling of query

operators to minimize resource consumption during times of

peak load. They show that the choice of an operator scheduling

strategy can have significant impact on the run-time system

memory usage. Then they present Chain scheduling, an

operator scheduling strategy for data stream systems that is near-

optimal in minimizing run-time memory usage for any collection

of single stream queries involving selections, projections, and

foreign-key joins with stored relations. They studied the problem

of operator scheduling in data stream systems, with the goal of

minimizing memory requirements for buffering tuples. They

proposed the Chain scheduling strategy and proved its optimality

for the case of single-stream queries with selections, projections,

and foreign key joins with static stored relations. Furthermore,

they showed that Chain scheduling performs well for other types

of queries, including queries with sliding-window joins.

Moustafa A.Hammad et. al.[16], Proposed “Scheduling for

shared window joins over data streams”. In this paper , they

address the shared execution of windowed joins a core operator

for CQ systems they show that the strategy used in systems to

date has a previously unreported performance flaw that can

negatively small windows, then they propose two new execution

strategies for shared joins they evaluate the alternatives using

both analytical models and implementation in a DBMS the

results show that one strategy, called MQT provides the best

performance over a range of workload settings. They have

described and evaluated three scheduling algorithms that

priorities such shared execution to reduce the average response

time per query while preserving their original semantics LWO

was used previously,SWF and MQT were developed as part of

the work described here SWF directly addressed the performance

flaw identified for LWO,MQT was motivated by the tradeoffs

between LWO and SWF as identified by an analytical study of

the two approaches showed that the MQT algorithm provides up

to 60% improvement in average response time over the LWO

algorithm .The experiments also demonstrated that the benefits of

MQT come at the cost of only a small increase in memory

overhead.

Don Carney et. al.[15] proposed “Operator Scheduling in a Data

Stream Manager”. Many stream-based applications have

sophisticated data processing requirements and real-time

performance expectations that need to be met under high-volume,

time-varying data streams. In order to address these challenges,

they propose novel operator scheduling approaches that specify

which operators to schedule in which order to schedule the

operators, and how many tuples to process at each execution

step. They also discuss application-aware extensions that make

scheduling decisions according to per-application Quality of

Service (QoS) specifications. Finally, they present prototype-

based experimental results that characterize the efficiency and

effectiveness of our approaches under various stream workloads

and processing scenarios. This paper presents an experimental

investigation of scheduling algorithms for stream data

management systems. It demonstrates that the effect of system

overheads can have a profound impact on real system

performance. They have also discussed exactly how these

overheads are affected in a running stream data manager. They

also addressed QoS issues and extended our basic algorithms to

address application-specific QoS expectations. They described an

approximation technique based on bucketing that trades off

scheduling quality with scheduling overhead. The overriding

message of this paper is that to build a practical data stream

management system, one must ensure that scheduler overhead be

small relative to useful work. They have provided some

interesting results in this direction by focusing on batching

techniques.

Shivnathbabu et. al.[13] proposed “Exploiting k-Constraints to

Reduce Memory Overhead in Continuous Queries Over Data

Streams”. They present a query processing architecture, called k-

Mon, that detects useful k-constraints automatically and exploits

the constraints to reduce run-time state for a wide range of

continuous queries. Experimental results showed dramatic state

reduction, while only modest computational overhead was

incurred for our constraint monitoring and query execution

algorithms. In this article they introduced the concept of k-

constraints: “relaxed” constraints that are more likely to hold in

data stream environments than their strict counterparts. They

showed empirically that exploiting k-constraints can be very

effective at reducing the memory requirement for continuous SPJ

queries over streams, and that k-constraints can be monitored and

incorporated into query processing with low computational

overhead. Finally, they presented a unified query-processing

framework for exploiting k-constraints that incorporates our

execution and monitoring algorithms.

Mohammad Hossein et. al.[12] Proposed “Scheduling to

Minimize Staleness and Stretch in Real-Time Data Warehouses”.

they study scheduling algorithms for loading data feeds into real

time data warehouses, which are used in applications such as IP

network monitoring, online canonical trading, and credit card

fraud detection. Their first objective is to schedule the updates on

one or more processors in a way that minimizes the total

staleness .In order to ensure fairness, our second objective is to

limit the maximum \stretch", which they denote (roughly) as the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

ratio between the duration of time an update waits till it is

finished being processed, and the length of the update. They

prove that any online non preemptive algorithm, no processor of

which is ever voluntarily idle, incurs a staleness at most a

constant factor larger than an obvious lower bound on total

staleness They give a constant-stretch algorithm, provided that

the processors are succulently fast, for the quasi periodic model,

in which tables can be clustered into a few groups such that the

update frequencies within each group vary by at most a constant

factor. Finally, they show that our constant-stretch algorithm is

also constant-competitive(subject to the same proviso on

processor speed) in the quasi periodic model with respect to total

weighted staleness, where tables are assigned weights that

receive their priorities. In this paper, they studied the complexity

of scheduling data-loading jobs to minimize the staleness of a

real time stream warehouse. They proved that any on-line non

preemptive algorithm that is never voluntarily idle achieves a

constant competitive ratio with respect to the total staleness of all

tables in the warehouse, provided that the processors are

succulently fast. They also showed that stretch and weighted

staleness can be bounded under certain conditions on the

processor speed and on the arrival times of new data.

Lukasz Golab et. al. [10] proposed “Scalable Scheduling of

Updates in Streaming Data Warehouses”. In this paper they

model the streaming warehouse update problem as a scheduling

problem, where jobs correspond to processes that load new data

into tables, and whose objective is to minimize data staleness

over time and also present a suite of update scheduling

algorithms and extensive simulation experiments to map out

factors which affect their performance. The goal of a streaming

warehouse is to propagate new data across all the relevant tables

and views as quickly as possible.

L. Gladis Flower1 et. al.[9] proposed” Updating the jobs in

Streaming Data Warehouse using scheduling framework”. In this

paper, they motivated, formalized, and solved the problem of non

preemptively scheduling updates in a real time streaming

warehouse. They proposed the notion of average staleness as a

scheduling metric and presented scheduling algorithms designed

to handle the complex environment of a streaming data

warehouse. Then they proposed a scheduling framework that

assigns jobs to processing tracks and uses basic algorithms to

schedule jobs within a track. The main feature of our framework

is the ability to reserve resources for short jobs that often

correspond to important frequently refreshed tables, while

avoiding the inefficiencies associated with partitioned scheduling

techniques. They had implemented some of the proposed

algorithms in the Data Depot streaming warehouse, which is

currently used for several very large warehousing projects within

AT&T. As future work, they plan to extend our framework with

new basic algorithms.

P. Urmila et. al.[8] proposed “Scheduling of Updates in Data

Warehouses”. In this paper they develop a theory of temporal

consistency for stream warehouses that allows for multiple

consistency levels. they model the streaming warehouse update

problem as scheduling problem, where jobs correspond to

processes that load new data into tables, and whose objective is

to minimize data staleness over time. Unlike traditional data sets,

stream data flow in and out of a computer system continuously

and with varying update rates. They are temporally ordered, fast

changing, massive, and potentially infinite. To discover

knowledge or patterns from data streams, it is necessary to

develop single-scan, on-line, multilevel, multidimensional stream

processing and analysis methods. There has also been work on

supporting various warehouse maintenance policies, such as

immediate, deferred and periodic There has been little work on

choosing, of all the tables that are now out-of-date due to the

arrival of new data, which one should update next. This is exactly

the problem they study in this paper. In addition to understanding

data semantics and query results, another use for consistency is to

minimize the number of base table and view updates in a

warehouse. Averages staleness as scheduling metric and

presented scheduling algorithms designed to handle complex

environment of a streaming data warehouse. they then proposed a

scheduling framework that assigns jobs to processing tracks and

also uses the basic algorithms to schedule jobs within a same.

Dattatray G.Modani,Vinod S.Badgujar,,A.Simhadribabu,[7]

Proposed “Rapid Scalable Scheduling for Updates in Streaming

Data Warehouses”. This paper includes a streaming data

warehouse update problem as a scheduling problem where jobs

correspond to the process that load new data into tables and the

objective is to minimize data staleness over time. They proposed

scheduling framework that handles the complications

encountered by a stream warehouse: view hierarchies and

priorities, data consistency, inability to pre-empt updates,

heterogeneity of update jobs caused by different inter arrival

times and data volumes among different sources and transient

overload. They proposed the notion of average staleness as

scheduling metric and presented scheduling algorithms designed

to handle the complex environment of a streaming data

warehouse. Then they proposed a scheduling framework that

assigns jobs to processing tracks and uses basic algorithms to

schedule jobs within a track. The main feature of framework is

the ability to reserve resources for short jobs that often

correspond to important frequently refreshed tables, while

avoiding the inefficiencies associated with partitioned scheduling

techniques.

 Dattatray G.Modani,A.Simhadribabu,Jayant D.Bokefode,[6]

Proposed “A Novel Approach For Updates In Streaming Data

Warehouses By Scalable Scheduling “.This paper includes a

streaming data warehouse update problem as a scheduling

problem where jobs correspond to the process that load new data

into tables and the objective is to minimize data staleness over

time. They proposed scheduling framework that handles the

complications encountered by a stream warehouse. The need for

on-line warehouse refreshment introduces several challenges in

the implementation of data warehouse transformations, with

respect to their Execution time and their overhead to the

warehouse processes. The problem with this approach is that new

data may arrive on multiple streams, but there is no mechanism

for limiting the number of tables that can be updated

simultaneously. The formalized and solved the problem of no

preemptively scheduling updates in a real-time streaming

warehouse. They proposed the notion of average staleness as

scheduling metric and presented scheduling algorithms designed

to handle the complex environment of a streaming data

warehouse. Then they proposed a scheduling framework that

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

assigns jobs to processing tracks and uses basic algorithms to

schedule jobs within a track. The main feature of framework is

the ability to reserve resources for short jobs that often

correspond to important frequently refreshed tables, while

avoiding the inefficiencies associated with partitioned scheduling

techniques.

Sathya.T [5] proposed “Updates of Scheduling in Streaming

Warehouses”. A stream warehouse is a Data Stream Management

System (DSMS) that stores a very long history, e.g. years or

decades or equivalently a data warehouse that is continuously

loaded. Which are the combining features of data stream system

and traditional data warehouse So, in each time the update

process to be done in DWH(data warehouse).This is the main

problem of scheduling. To overcome this problem to propose

update scheduling technique is used. Which is used to handle the

multiple problems of stream warehouse? Particularly the

staleness problem to be minimized with the help of update

scheduling. Which is efficiently used to update the jobs by

different arrival times? The objective is to schedule the updates

on one or more processors in a way that minimizes the total

staleness. In traditional applications, warehouses are updated

periodically (e.g., every night or once a week) and data analysis

is done off-line. In contrast, real time warehouses also known as

active warehouses continually load incoming data feeds to

support time critical analyses. For instance, an Internet Service

Provider (ISP) may collect streams of network configuration and

performance data generated by remote sources in nearly real

time. The goal of a streaming warehouse is to propagate new data

across all the relevant tables and views as quickly as possible.

They proposed scheduling algorithm is used to handle complex

streaming data warehouse. This algorithm issued to assign the

jobs to processing tracks and basic algorithms are used to

schedule jobs within the track.

Mr.S.S.Boopathy, Mr.K.M.Subramanian [4] proposed

“Improved Scheduling and Minimized Updates in Data

Warehouses”. In the proposed work, Particles Swarm

Optimization (PSO) algorithm is used. It is a computational

method that can optimizes the problem by iteratively trying to

improve the possible solutions with regard to a given measure of

quality. In their setting, the arrival of a set of new data releases

an update that seeks to append the data to the corresponding

table. They analytically derive a priori guarantees on the quality

of data in the warehouse expressed as upper bounds on table

staleness, which is the discrepancy between the current time and

the maximum timestamp of a record uploaded in the table so far.

Their main innovation is the multi track Proportional algorithm

for scheduling the large and heterogeneous job sets encountered

by a streaming warehouse.

S.M Subhani1, G.Srinivas Reddy [3] proposed “Dynamic

Updates on Streaming of Data ware Houses Explore Tradeoffs”.

In this paper they will extend this traditional approach to new

granularity algorithms for accessing efficient updates multiple

tables together. they intend to explore the tradeoffs between

update efficiency and minimizing staleness in the context. Their

main innovation is the Multi track Proportional algorithm for

scheduling the large and heterogeneous job sets encountered by a

streaming warehouse additionally, they propose an update

chopping to deal with transient overload. They proposed the

notion of average staleness as scheduling metric and presented

scheduling algorithms designed to handle the complex

environment of a streaming data warehouse. Then proposed a

scheduling framework that assigns jobs to processing tracks and

uses basic algorithms to schedule jobs within a track.

A. Sreeja et. al [2]. proposed “Load Balancer Scheduling Over

Streaming Data in Federated Databases”. This paper includes a

streaming data warehouse update problem as a scheduling

problem where jobs correspond to the process that load new data

into tables and the objective is to minimize data staleness over

time. They proposed scheduling framework that handles the

complications encountered by a stream warehouse: view

hierarchies and priorities, data consistency, inability to pre-empt

updates, heterogeneity of update jobs caused by different inter

arrival times and data volumes among different sources and

transient overload. The formalized and solved the problem of no

preemptively scheduling updates in a real-time streaming

warehouse. They proposed the notion of average staleness as

scheduling metric and presented scheduling algorithms designed

to handle the complex environment of a streaming data

warehouse. Then they proposed a scheduling framework that

assigns jobs to processing tracks and uses basic algorithms to

schedule jobs within a track. The main feature of framework is

the ability to reserve resources for short jobs that often

correspond to important frequently refreshed Tables, while

avoiding the inefficiencies associated with partitioned scheduling

techniques.

S. M. Subhani1, M. Nagendramma proposed [1] “Minimize

Staleness and Stretch in Streaming Data Warehouses”. They

study scheduling algorithms for loading data feeds into real time

data warehouses, which are used in applications such as IP

network monitoring, online financial trading, and credit card

fraud detection. They discuss update scheduling in streaming

data warehouses, which combine the features of traditional data

warehouses and data stream systems. While traditional data

warehouses are typically refreshed during downtimes, streaming

warehouses are updated as new data arrive. In this paper they

develop a theory of temporal consistency for stream warehouses

that allows for multiple consistency levels. They model the

streaming warehouse update problem as a scheduling problem,

where jobs correspond to processes that load new data into tables

, and whose objective is to minimize data staleness over time.

they studied the complexity of scheduling data loading jobs to

minimize the staleness of a real time stream warehouse. they

proved that any on-line non-preemptive algorithm that is never

voluntarily idle achieves a constant competitive ratio with respect

to the total staleness of all tables in the warehouse, provided that

the processors are sufficiently fast. They projected the notion of

averages staleness as a scheduling metric and presented

scheduling algorithms designed to handle complex environment

of a streaming data warehouse. Then they proposed a

scheduling framework that assigns jobs to processing tracks and

also uses the basic algorithms to schedule jobs within a same.

Shivnath Babu and Jennifer Widom[18] proposed “Exploiting k-

Constraints to Reduce Memory Overhead in Continuous Queries

over Data Streams”. Then they present a query execution

algorithm that takes constraints over streams into account in

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

order to reduce memory overhead. If input streams do not adhere

to constraints within the specified adherence parameters, our

algorithm automatically degrades gracefully to provide

continuous approximate answers. They have implemented our

approach in a test bed continuous query processor and

preliminary experimental results are reported. In this paper they

have demonstrated the effectiveness of incorporating constraints

into a data stream query processor in order to reduce the memory

overhead required for continuous queries. They introduced the

important concept of constraints, which are likely to hold in data

stream environments even when strict constraints do not hold.

they showed empirically that constraints are very effective at

reducing the memory requirement in a wide variety of SPJ

queries. They showed that precision of query results degrades

gracefully in cases when constraints may be compromised.

 Neoclis Polyzotis et. al.[19] Proposed “Supporting Streaming

Updates in an Active Data Warehouse”. Active Data

Warehousing has emerged as an alternative to conventional

warehousing practices in order to meet the high demand of

applications for up-to-date information. The need for on-line

warehouse refreshment introduces several challenges in the

implementation of data warehouse transformations, with respect

to their execution time and their overhead to the warehouse

processes. In this paper, they focus on a frequently encountered

operation in this context, namely, the join of a fast stream S of

source updates with a disk-based relation R, under the constraint

of limited memory. They proposed a specialized join algorithm,

termed mesh join (MESHJOIN), that compensates for the

difference in the access cost of the two join inputs by (a) relying

entirely on fast sequential scans of R, and (b)sharing the I/O cost

of accessing R across multiple tulles of S. They present an

experimental study that validates the performance of MESHJOIN

on synthetic and real-life data. Our results verify the scalability

of MESHJOIN to fast streams and large relations, and

demonstrate its numerous advantages over existing join

algorithms .In this paper, they have considered an operation that

is commonly encountered in the context of active data

warehousing: the join between a fast stream of source updates

Sand a disk-based relation R under the constraint of limited

memory. they have proposed the mesh join (MESHJOIN), a

novel join operator that operates under minimum assumptions for

the stream and the relation. They have developed a systematic

cost model and tuning methodology that accurately associates

memory consumption with the incoming stream rate. Finally,

they have validated our proposal through an experimental study

that has demonstrated its scalability to fast streams and large

relations under limited main memory.

3. Conclusion

This paper presents a survey on various streaming data

warehouses Scheduling Algorithms that were proposed by earlier

researchers for the development in the field of Data Warehouses.

Various algorithms and methodologies discussed above will help

in developing efficient and effective update scheduling

algorithm in streaming data warehouses.

References
[1] S.M.Subani.M.Nagendramma,” Minimize Staleness and stretch

in Streaming Data Warehouses”, IJIR, Vol.2, Issue 9, September

2013.

[2] A. Sreeja, I.V.Sailakshmiharitha, N.Bhaskar, “Load Balancer

Scheduling Over Streaming Data in Federated Databases” IJRET,

Vol.2, Issue 8, August2013.

[3]S.M.Subhani, G.Srinivas Reddy, “Dynamic Updates on

Streaming of Data warehouses Explore Tradeoffs”, IJDCST, Vol.1,

Issue5, August 2013.

[4] Mr.S.S.Boopathy, Mr.K.M.Subraman,”Improved Scheduling and

Minimized Updates in Data Warehouses”, IJADMC Vol.1, Issue2,

August2013

[5] Satya T,”Updates of Scheduling in Streaming Warehouses”,

ASARIC May 2013

 [6]Dattatray G.Modani,A.Simhadribabu,Jayant D.Bokefode, “A

Novel Approach For Updates In Streaming Data Warehouses By

Scalable Scheduling “,IJERT,Vol 2,Issue 7,July 2013.

[7] Dattatray G.Modani,Vinod S.Badgujar,A.Simhadribabu, “Rapid

Scalable Scheduling for Updates in Streaming Data

Warehouses”,IJIET,Vol 2,Issue 3,June 2013.

[8] P. Urmila ,K.Siva Rama Krishnan,P.Raja Prakash Rao,

“Scheduling of Updates in Data Warehouses”,IJACMS,vol 3,Issue

3,September 2012.

 [9]. L. Gladis Flower1, C.Saravanan,” Updating the jobs in

Streaming Data Warehouse using scheduling framework”,

IJAEA,Vol 1,Issue 2,2012.

[10]Lukas Golab, Theodore Johnson, and Vladislav

Shkapenyuk,”Scalable Scheduling of Updates in Streaming Data

Warehouses”,IEEE Transactions On KDE,vol.24,No.6,June 2012.

[11] M.H. Bateni, L. Golab, M.T. Hajiaghayi, and H. Karloff,

“Scheduling to Minimize Staleness and Stretch in Real-time Data

Warehouses,” Proc. 21st Ann. Symp. Parallelism in Algorithms and

Architectures (SPAA), pp. 29-38, 2009.

[12] Mohammad Hossein et. al, “Scheduling to Minimize Staleness

and Stretch in Real-Time Data Warehouses”,ACM, August 2009.

[13] S. Babu, U. Srivastava, and J. Widom, “Exploiting K-

constraints to Reduce Memory Overhead in Continuous Queries

over Data Streams,” ACM Trans. Database Systems, vol. 29, no. 3,

pp. 545- 580, 2004.

[14] B. Babcock, S. Babu, M. Datar, and R. Motwani, “Chain:

Operator Scheduling for Memory Minimization in Data Stream

Systems,” Proc. ACM SIGMOD Int’l Conf. Management of Data,

/pp. 253-264, 2003.

 [15] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M.

Cherniack, and M. Stonebreaker, “Operator Scheduling in a Data

Stream Manager,” Proc. 29th Int’l Conf. Very Large Data Bases

(VLDB), pp. 838- 849, 2003.

[16] Moustafa A.Hammad et. al., “Scheduling for shared window

joins over data streams”, VLDB Conference 2003.

 [17] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying Update

Streams in a Soft Real-Time Database System,” Proc. ACM

SIGMOD Int’l Conf. Management of Data, pp. 245-256, 1995.

[18] Shivnath Babu and Jennifer Widom,“Exploiting k-Constraints

to Reduce Memory Overhead in Continuous Queries over Data

Streams”,Stanford University.

 [19] Neoclis Polyzotis et. al. , “Supporting Streaming Updates in an

Active Data Warehouse”.

